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Abstract. The hadronic decays η, η′ → 3π and η′ → ηππ are investigated within the framework of U(3)
chiral effective field theory in combination with a relativistic coupled-channels approach. Final state in-
teractions are included by deriving s- and p-wave interaction kernels for meson-meson scattering from the
chiral effective Lagrangian and iterating them in a Bethe-Salpeter equation. Very good overall agreement
with currently available data on decay widths and spectral shapes is achieved.

PACS. 12.39.Fe Chiral Lagrangians – 13.25.Jx Decays of other mesons

1 Introduction

The hadronic decays of η and η′ offer a possibility to study
symmetries and symmetry breaking patterns in strong in-
teractions. The isospin-violating decays η, η′ → 3π, e.g.,
can only occur due to an isospin-breaking quark mass dif-
ferencemu−md or electromagnetic effects. While for most
processes isospin violation of the strong interactions is
masked by electromagnetic effects, these corrections are
expected to be small for the three pion decays of η and
η′ (Sutherland’s theorem) [1] which has been confirmed
in an effective Lagrangian framework [2]. Neglecting elec-
tromagnetic corrections the decay amplitude is directly
proportional to mu −md.

Moreover, the η-η′ system offers a testing ground for
chiral SU(3) symmetry in QCD and the role of both spon-
taneous and explicit chiral symmetry breaking, the latter
one induced by the light quark masses. In the absence of
η-η′ mixing, η would be the pure member η8 of the octet of
Goldstone bosons which arise due to spontaneous break-
down of chiral symmetry.

Reactions involving the η′ might also provide insight
into gluonic effects through the axial U(1) anomaly of
QCD. The divergence of the singlet axial-vector current
acquires an additional term with the gluonic field strength
tensor that remains in the chiral limit of vanishing light
quark masses. This term prevents the pseudoscalar singlet
η0 from being a Goldstone boson which is phenomeno-
logically manifested in its relatively large mass, mη′ =
958 MeV.
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An appropriate theoretical framework to investigate
low-energy hadronic physics is provided by chiral per-
turbation theory (ChPT) [3], the effective field theory
of QCD. In ChPT Green’s functions are expanded per-
turbatively in powers of Goldstone boson masses and
small three-momenta. However, final state interactions in
η → 3π have been shown to be substantial both in a com-
plete one-loop calculation in SU(3) ChPT [4] and using
extended Khuri-Treiman equations [5].

In η′ decays final state interactions are expected to
be even more important due to larger phase space and
the presence of nearby resonances. It is claimed, e.g., that
the exchange of the scalar resonance a0(980) dominates
the decays η′ → ηππ [6] which has been confirmed both
in a full one-loop calculation utilizing infrared regular-
ization [7] and in a chiral unitary approach [8]. In the
latter work, resonances are generated dynamically by it-
erating the chiral effective potentials to infinite order in
a BSE, whereas in [7] the effects of the a0(980) are hid-
den in a combination of coupling constants of the effective
Lagrangian.

In the present investigation we extend the approach
of [8] by including p-wave interactions. This will also al-
low us to obtain more realistic predictions for the decay
η′ → π+π−π0, where p-waves can —in principle— yield
sizable contributions to the decay width and Dalitz slope
parameters. Furthermore, we study the implications of two
very recent experiments by the KLOE [9] and the VES [10]
Collaborations which have determined the Dalitz plot dis-
tributions of η → 3π and η′ → ηπ+π−, respectively, with
high statistics. Since these new data have not been pub-
lished yet, we first present the results which we obtain by
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relying purely on the numbers quoted by the Particle Data
Group (PDG) [11]. As a second step, we include both new
experiments separately in the fit and discuss the resulting
changes.

The improved analysis of η, η′ hadronic decays pre-
sented here is also timely in view of the planned WASA
facility at COSY [12] and MAMI-C [13] which will provide
even higher statistics for these decays. More precise data
will help to constrain the parameters of the Lagrangian
and pose tighter constraints on the framework employed
here. We will illustrate that meson-meson scattering phase
shifts along with available data on η, η′ hadronic decays
provide a set of tight constraints which must be met by
theoretical approaches.

This work is organized as follows. In the next section
details of the effective Lagrangian in the U(3) framework
are given. Section 3 illustrates our way of incorporating
final state interactions and includes a discussion of con-
straints set by unitarity. In sect. 4 we present our results
based on data from [11] and the changes which arise if the
new, but preliminary experimental results by KLOE [9]
and VES [10] are included. A critical examination of the
η → 3π data of KLOE based on purely phenomenologi-
cal arguments is presented in sect. 5. We summarize our
findings in sect. 6.

2 Effective Lagrangian

In this section we present the effective Lagrangian
within the framework of U(3) chiral perturbation the-
ory and summarize the resulting π̃0-η8-η0 mixing [8].
Up to second order in the derivative expansion the
Lagrangian for the nonet of pseudoscalar mesons
(π+/−, π̃0,K+/−,K0, K̄0, η8, η0) reads (note that we do
not make use of large-Nc counting rules) [14–16]

L(0+2) = −V0 + V1〈∂µU †∂µU〉+ V2〈U †χ+ χ†U〉

+iV3〈U †χ−χ†U〉+V4〈U †∂µU〉〈U †∂µU〉, (1)

where U is a unitary 3×3 matrix which collects the pseu-
doscalar fields. Its dependence on π̃0, η8 and η0 is given by

U = exp

(

diag(1,−1, 0) iπ̃
0

f

+diag(1, 1,−2) iη8√
3f

+
i
√
2η0√
3f

+ · · ·
)

. (2)

The expression 〈. . . 〉 denotes the trace in flavor space, f
is the pseudoscalar decay constant in the chiral limit and
the quark mass matrix M = diag(mu,md,ms) enters in
the combination χ = 2BM with B = −〈0| q̄q |0〉 /f 2 be-
ing the order parameter of spontaneous chiral symmetry
breaking. The coefficients Vi are functions of the singlet

field η0 and can be expanded in terms of this variable

Vi

[η0
f

]

= v
(0)
i + v

(2)
i

η20
f2

+ v
(4)
i

η40
f4

+ . . . for i = 0, 1, 2, 4,

V3

[η0
f

]

= v
(1)
3

η0
f

+ v
(3)
3

η30
f3

+ . . . (3)

with expansion coefficients v
(j)
i not fixed by chiral

symmetry. Parity conservation implies that the Vi are
all even functions of η0 except V3, which is odd, and
V1(0) = V2(0) = V1(0) − 3V4(0) = 1

4f
2 gives the correct

normalization for the quadratic terms of the mesons.
Thus, at a given order of the derivative expansion one
obtains an infinite string of increasing powers of η0
preceding each term in the Lagrangian.

In order to describe the isospin-violating decays
η, η′ → 3π, we need to work with different up- and
down-quark masses and their difference mu − md will
be parametrized by means of the renormalization scale-
invariant quantity

m2
ε = B(md −mu) (4)

which can be expressed in terms of physical meson masses
following Dashen’s theorem [17]

m2
ε = m2

K0 −m2
K± +m2

π± −m2
π0 (5)

up to corrections of O(e2p2, (md −mu)p
2).

While in the isospin limit of equal up- and down-quark
masses π̃0 does not undergo mixing with the η8-η0 system,
a non-vanishing quark mass difference mu − md induces
π̃0-η8-η0 mixing. The mixing of π̃0, η8 and η0 is deter-
mined by diagonalizing both the kinetic and mass terms
in the Lagrangian. Since we count the mass of the η′ as a
quantity of zeroth chiral order, the O(p4) Lagrangian

L(4) =
∑

i

βi(η0)Oi (6)

contributes to η8-η0 mixing already at leading chiral or-
der [18]. The operators Oi can be found in [18, 19], but
for completeness we will display in appendix A those rel-
evant for the present calculation. The functions βi can be
expanded in η0 in the same manner as the Vi in eq. (1)

with expansion coefficients β
(j)
i . At leading order in isospin

breaking and at second chiral order the mass eigenstates
π0, η, η′ are related to the original fields π̃0, η8, η0 by [8]

π̃0 = (1 +Rπ̃0π0)π0 +Rπ̃0ηη +Rπ̃0η′η
′,

η8 = R8π0π0 + (1 +R8η)η +R8η′η
′,

η0 = R0π0π0 +R0ηη + (1 +R0η′)η
′, (7)
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with the mixing parameters given by

R
(0)
8π0 =

m2
ε√

3(m2
η −m2

π)
,

R
(0)
π̃0η = −R(0)

8π0 ,

R
(2)
8π0 = R

(0)
8π0

(

R
(2)
π̃0π0 +

2
3∆GMO

)

,

R
(2)
π̃0η = −R(0)

8π0

(

R
(2)
8η + 2

3∆GMO

)

,

R
(2)
0η =

4ṽ
(1)
2 (m2

η −m2
π)√

2f2m2
0

,

R
(2)
8η′ = −R

(2)
0η +

8β
(0)
5,18(m

2
η −m2

π)√
2f2

,

R
(2)
0π0 = 3R

(0)
8π0R

(2)
0η ,

R
(2)
π̃0η′ = 2R

(0)
8π0R

(2)
8η′ ,

R
(2)
π̃0π0 = −

4β
(0)
5 m2

π + 6β
(0)
4 (m2

η +m2
π)

f2
,

R
(2)
0η′ = −

2β
(0)
4,5,17,18(m

2
η +m2

π)

f2
,

R
(2)
8η = −

4β
(0)
5 m2

η + 6β
(0)
4 (m2

η +m2
π)

f2
,

(8)

where the superscript on R denotes the chiral order and

we have employed the abbreviations ṽ
(1)
2 = 1

4f
2− 1

2

√
6v

(1)
3 ,

β
(0)
5,18 = β

(0)
5 +3β

(0)
18 /2 and β

(0)
4,5,17,18 = 3β

(0)
4 +β

(0)
5 −9β

(0)
17 +

3β
(0)
18 . Note that for β

(0)
5,18 6= 0 the mixing parameters given

in eq. (8), which have been derived by diagonalizing the
Lagrangian, depart from the usually employed orthogo-
nal mixing scheme for η-η′ mixing, where R8η′ = −R0η.
Isospin breaking is known to be small, therefore terms of
order (mu−md)

2 have been neglected. The quantitym2
0 =

2v
(2)
0 /f2 is the mass of the η′ meson in the chiral limit,

m2
π = 2Bm̂ and m2

η = 2B(ms + 2m̂)/3 with m̂ = (mu +
md)/2 denote the pseudoscalar meson masses at leading
order, while the deviation from the Gell-Mann–Okubo
mass relation for the pseudoscalar mesons is given by

∆GMO =
6(m2

η −m2
π)

f2

[

β
(0)
5 −6β

(0)
8 −12β

(0)
7 +

4(ṽ
(1)
2 )2

f2m2
0

]

,

(9)
where m2

K = B(m̂+ms).

3 Final state interactions

One-loop corrections have been shown to be important
in the decay η → 3π [4], but even when they are taken
into account the resulting decay width remains below the
measured value [11]. In η′ → 3π one expects even larger
contributions from final state interactions [8], whereas for
η′ → ηππ reasonable agreement with experiment can also
be achieved in a perturbative approach employing infrared

η

π
−

π
+

π
0

Fig. 1. Shown is a possible contribution to final state interac-
tions in the decay η → π+π−π0.

regularization [7]. In the present combined analysis of
these three dominant hadronic decay modes of η and η′ we
include final state interactions in a non-perturbative fash-
ion as introduced in [8], but extending the work of [8] by
taking p-waves into account and by improving the fit pro-
cedure for the unknown couplings in the chiral Lagrangian
via Monte Carlo techniques.

The underlying idea of our approach is that the initial
particle, i.e. the η or η′, decays into three mesons and that
two out of these rescatter (elastically or inelastically) an
arbitrary number of times, see fig. 1 for illustration. All oc-
curring vertices are derived from the effective Lagrangian
and are thus constrained by chiral symmetry. Interactions
of the third meson with the pair of rescattering mesons
are neglected which turns out to be a good approxima-
tion, particularly for the decays η → 3π and η′ → ηππ. In
the decays under consideration the two-particle states ei-
ther carry one elementary charge or no net charge. Charge
conservation prevents transitions between these two sets,
while the different channels of one set are generally cou-
pled. There are nine uncharged combinations of mesons,

π0π0, π+π−, ηπ0, ηη, K0K̄0, K+K−, η′π0, η′η, η′η′ ,
(10)

and a set of four charged channels,

π0π+, ηπ+, K+K̄0, η′π+ . (11)

For the p-waves there arise some simplifications in the un-
charged channels. Due to Bose symmetry contributions
from identical particles vanish and the remaining two-
particle states can be classified according to their behavior
under charge conjugation. While for J = 1 π+π− and KK̄
must be C-odd combinations, the other pairs are C-even,
so that transitions between the two classes of states are
forbidden.

For each partial-wave l unitarity imposes a restric-
tion on the (inverse) T -matrix of meson-meson scattering
above threshold

ImT−1
l = − |qcm|

8πEcm
(12)

with Ecm and qcm being the energy and the three-
momentum of the particles in the center-of-mass (c.m.)
frame of the channel under consideration, respectively.
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Hence, the imaginary part of T−1
l is equal to the imag-

inary piece of the fundamental scalar loop integral G̃mm̄

above threshold

G̃mm̄(p2) =

∫

ddk

(2π)d
i

(k2 −m2 + iε)((k − p)2 − m̄2 + iε)
,

(13)
with m, m̄ denoting the masses of the two particles. In
dimensional regularization the finite part Gmm̄ of G̃mm̄ is
given by

Gmm̄(p2)= amm̄(µ)+
1

16π2

[

−1+ln
mm̄

µ2
+
m2−m̄2

p2
ln
m

m̄

− 2
√

λmm̄(p2)

p2
artanh

√

λmm̄(p2)

(m+ m̄)2 − p2

]

,

λmm̄(p2)=
(

(m− m̄)2 − p2
)(

(m+ m̄)2 − p2
)

, (14)

where amm̄ is a subtraction constant which varies with
the scale µ introduced in dimensional regularization in
such a way that Gmm̄ is scale independent [20]. While
unitarity constrains the imaginary part of the inverse T -
matrix, the real part can be linked to ChPT. From the
effective Lagrangian up to fourth chiral order we derive
the c.m. scattering amplitude Afi(θ), where θ is the c.m.
scattering angle and the indices i, f denote the in- and out-
going meson pairs, respectively. The decomposition into
partial waves reads

A(θ) =

2
∑

l=0

(2l + 1)Al Pl(cos θ) . (15)

As usual, Pl denotes the l-th Legendre polynomial. Note
that partial waves with l > 2 do not occur, since we con-
sider the effective Lagrangian only up to fourth chiral or-
der. Given a set of n coupled channels the partial-wave
amplitudes Al (just as the full amplitude A) are repre-
sented by symmetric n × n matrices which are functions
of the c.m. energy Ecm. The symmetry factor for two
identical particles in a loop is absorbed into the Afi by

equipping the matrix elements with a factor of 1/
√
2 for

each pair of identical particles in the initial or final state.
The inverse T -matrix is then given by

T−1
l = A−1

l +G , (16)

where the loop integralsGmm̄ for the different channels are
collected in the diagonal matrix G, and inversion yields

Tl = [
�
+Al ·G]−1 Al . (17)

The expansion of eq. (17) in powers of Al ·G,

Tl = Al −Al ·G ·Al + · · · , (18)

can then be linked to the loopwise expansion of ChPT. In
fact Tl amounts to the summation of a bubble chain to
all orders in the s-channel, equivalent to solving a Bethe-
Salpeter equation with Al as driving term, where all mo-
menta in Al are set to their on-shell values.

The partial-wave expansion of the T -matrix may be
cast in Lorentz covariant form. For the scattering of par-
ticles with four-momenta qi, q̄i into particles with four-
momenta qf , q̄f we define the Mandelstam variables ŝ =

(qi+ q̄i)
2 = p2, t̂ = (qi−qf )2 and û = (qi− q̄f )2. By means

of the covariant operators Jl = Jl(ŝ, t̂− û)

Js = 1 ,

Jp = hµνq
µ
i q

ν
f =

t̂− û

4
+

(q2i − q̄2i )(q
2
f − q̄2f )

4ŝ
,

Jd =J
2
p −

hµνq
µ
i q

ν
i hρσq

ρ
fq

σ
f

3
, (19)

with

hµν = −gµν + pµpν/p
2 (20)

the partial-wave expansions of A and T can be rewritten
as

A =
∑

l ÂlJl = ÂsJs + ÂpJp + ÂdJd ,

T =
∑

l T̂lJl = T̂sJs + T̂pJp + T̂dJd ,
(21)

where the Âl, T̂l only depend on ŝ. The Âl and T̂l are
related to the original partial waves Al and Tl by means
of a (diagonal) transformation matrix Cl

Al = Cl Âl Cl, Tl = Cl T̂l Cl, (22)

and in analogy to eq. (18) we can write down a Bethe-

Salpeter equation for T̂l

T̂l = Âl − T̂l Ĝl Âl (23)

with Ĝl = ClGCl. In the present work, we restrict our-
selves to s- and p-waves and drop the d-wave part T̂d.

We are now in a position to include infinite rescattering
processes of meson pairs, which are incorporated in T , as
final state interactions in the decay amplitudes. In order to
introduce a common notation for the decays investigated
in the present work, we define Mandelstam variables

s = (ph − pi)
2, t = (ph − pj)

2, u = (ph − pk)
2 (24)

for the generic process h→ i j k and the px represent the
momenta of the particles. Since all decays under consid-
eration happen to have a particle-antiparticle pair in the
final state, i.e. either π+π− or π0π0, which we denote by
j and k with j = k̄, C-invariance dictates that the decay
amplitude Ahijk(s, t, u) is symmetric under t ↔ u. The
full amplitude Ahijk, which includes s- and p-wave final
state interactions, is constructed in such a way that it re-
produces the tree level result and the unitarity corrections
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2i Im h

k

j

i

=
b, c, a

c, a, b

h

k, i, j

j, k, i

i, j, k

+

a

c

b
h

k

j

i

Fig. 2. Diagrammatic representation of the unitarity relation in eq. (26). The crosses indicate on-shell particles and phase space
integration.

from one-loop ChPT. It reads

Ahijk(s, t, u) = Ahijk(s, t, u)

+





∑

l=0,1

Jl(s, t− u)
[

T̂l(s)− Âl(s)
]





hi,jk

+





∑

l=0,1

Jl(t, u− s)
[

T̂l(t)− Âl(t)
]





hj,ik

+





∑

l=0,1

Jl(u, s− t)
[

T̂l(u)− Âl(u)
]





hk,ij

, (25)

where Ahijk is the complete tree level amplitude from

ChPT up to fourth chiral order. The differences T̂l − Âl
are introduced to avoid double counting of tree graphs
and start contributing at the one-loop level. Depending
on the subscripts of the parentheses T̂l and Âl collect ei-
ther charged or uncharged channels. For identical particles
in the final state (π0π0) they must be multiplied by a com-

binatorial factor of
√
2, in order to cancel the symmetry

factor which had been absorbed into the potentials. We
note that Ahijk does not entail the full one-loop result
from ChPT, since tadpoles are not included, but they can
be absorbed by redefining the couplings of the effective
Lagrangian [21].

3.1 Unitarity

The approach described above incorporates the relevant
pieces of the ChPT one-loop amplitude, fulfills unitarity
constraints from two-particle scattering and has a perspic-
uous diagrammatic representation of the final state inter-
actions: the summation of a bubble sum in each of the
three two-particle channels. However, it does not account
for three-body interactions in the final state, either me-
diated by the interaction of one of the two rescattering
particles with the third, spectating particle or by a gen-
uine three-body force. Therefore, the approach does not
guarantee exact unitarity of the resulting S-matrix which
implies a relation for the imaginary part of the decay am-
plitude Ahijk [22],

ImAhijk =
1

2

∑

a,b,c

(2π)4δ(4)(pi + pj + pk

−pa − pb − pc) T ∗
abc,ijk Ahabc , (26)

h

i, j, k

j, k, i

k, i, j

Fig. 3. Contribution which is included on the r.h.s. of eq. (27),
but not in A on the l.h.s. The crosses indicate on-shell particles
and phase space integration.

where T ∗
abc,ijk represents the complex conjugate of the

scattering amplitude for ijk → abc and the sum, which
includes the integration over phase space, runs over all
possible three-particle states which h can decay into. A
diagrammatic representation of the unitarity condition is
shown in fig. 2. For Tabc,ijk we make an approximation
similar to the one already applied to Ahijk, i.e., we drop
the last diagram on the r.h.s. of fig. 2 and keep only the
graphs involving exclusively two-particle rescattering. The
first term on the r.h.s. can be expressed in terms of the
unitarized two-body scattering amplitude T , and eq. (26)
reduces to

ImAhijk(s, t, u) =
1

16π2

∑

b,c

∫

d3pb
2p0b

d3pc
2p0c

∑

l=0,1

{

Jl(s, t
′ − u′) [T̂ bc,jkl (s)]∗

×Ahibc(s, t′, u′) δ(4)(pb + pc − pj − pk)
}

+
1

16π2

∑

a,c

∫

d3pa
2p0a

d3pc
2p0c

∑

l=0,1

{

Jl(t, u
′ − s′) [T̂ ac,ikl (t)]∗

×Ahajc(s′, t, u′) δ(4)(pa + pc − pi − pk)
}

+
1

16π2

∑

a,b

∫

d3pa
2p0a

d3pb
2p0b

∑

l=0,1

{

Jl(u, s
′ − t′) [T̂ ab,ijl (u)]∗

×Ahabk(s′, t′, u) δ(4)(pa + pb − pi − pj)
}

,

(27)
where, in analogy to the definition of A, we only include
two-particle rescattering in the s and p partial wave. The
Mandelstam variables s′, t′, u′ are defined as

s′ = (ph− pa)2, t′ = (ph− pb)2, u′ = (ph− pc)2. (28)

The two spectator approximations utilized for A and
the r.h.s. of eq. (27), however, do not coincide, since con-
tributions like the one shown in fig. 3 appear on the r.h.s.
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of eq. (27), but are missing in A on the l.h.s. The violation
of eq. (27) gives us the possibility to estimate the impor-
tance of this class of three-body contributions which goes
beyond pure two-particle rescattering as embodied in A.
As we will discuss below, it turns out that these devia-
tions are rather small for η → 3π and η′ → ηππ, where
phase space is narrow and dropping the last term in fig. 2
appears to be a good approximation. Assuming that struc-
tures involving more complicated iterated two-body inter-
actions or three-body contact terms yield contributions
of comparable (or smaller) size, we conclude that our ap-
proach approximates the physical amplitude reasonably
well. For η′ → 3π, on the other hand, where phase space
is about a factor of seven larger than for η → 3π, ne-
glecting the last term in fig. 2 is no longer justified and
hence eq. (27) is not suited to be an appropriate estimate
of unitarity corrections not included in the approach. A
more detailed study on the importance of three-body ef-
fects is beyond the scope of the present investigation, but
will be addressed in forthcoming work [23].

3.2 Isospin decomposition

In order to study the importance of the various two-
particle channels in the final state interactions and cor-
responding contributions from well-known resonances like
f0(980), a0(980) we perform a decomposition into isospin
channels. Assigning one common mass for all particles of
an isospin multiplet this can straightforwardly be done
for the isospin-conserving decay modes η′ → ηππ. To this
aim, we decompose the interaction kernel of the Bethe-
Salpeter equation, eq. (23), into an isospin-conserving and

an isospin-breaking part, Â
(ic)
l and Â

(ib)
l , respectively, so

that
Âl = O Â

(ic)
l OT +O Â

(ib)
l OT , (29)

where O represents the orthogonal transformation which
transforms from the isospin to the physical basis. Anal-
ogously to the definition of T̂l we can construct the uni-

tarized amplitude T̂
(ic)
l in the isospin limit by replacing

Âl by Â
(ic)
l in eq. (23). After substituting in eq. (25) the

pieces of the form [T̂l−Âl] by O[T̂
(ic)
l −Â(ic)

l ]OT , the influ-
ence of the different isospin channels may be examined by
omitting one specific combination of isospin and angular
momentum quantum numbers.

The situation is slightly more complicated for the
isospin-breaking decays of η and η′ into three pions. Re-
taining only one isospin-breaking vertex and inserting it
at all possible places in the bubble chain, the decay am-
plitude in terms of isospin channels is found by replacing
in eq. (25) the pieces of the form [T̂l − Âl] by

O[T̂
(ic)
l Ĝl Â

(ib)
l Ĝl T̂

(ic)
l −T̂ (ic)

l Ĝl Â
(ib)
l −Â(ib)

l Ĝl T̂
(ic)
l ]OT .

(30)
While the second and third term in the bracket describe
the insertion of the isospin-breaking vertex at both ends
of the bubble chain, the first one includes insertions at all
intermediate points.

4 Results

We now turn to the discussion of the numerical results of
the calculation which are obtained from a combined anal-
ysis of the decay widths, branching ratios, and slope pa-
rameters of the considered decays as well as phase shifts
in meson-meson scattering. The widths of η → 3π and
η′ → ηππ have been measured roughly at the 10% pre-
cision level, while for η′ → 3π0 the experimental uncer-
tainty is considerably larger and only an upper limit exists
for Γ (η′ → π+π−π0) [11]. Moreover, some of these decay
widths are constrained by the well-measured branching
ratios

r1 =
Γ (η → 3π0)

Γ (η → π+π−π0)
, r2 =

Γ (η′ → 3π0)

Γ (η′ → ηπ0π0)
. (31)

The Dalitz plot distribution of the decay h → i j k
(with j = k̄) is conventionally described in terms of the
two variables

x =

√
3(u− t)

2mh(mh −mi − 2mjk)
,

y =
(mi + 2mjk)

[

(mh −mi)
2 − s

]

2mhmjk(mh −mi − 2mjk)
− 1 ,

(32)

where the mx denote the masses of the respective par-
ticles (mj = mk = mjk) and the Mandelstam vari-
ables have been defined in eq. (24). In η → 3π measure-
ments (e.g., [24]) a slightly simpler definition of y, where
(mπ0 +2mπ+)/mπ+ is replaced by 3, is usually employed,

y =
3
[

(mh −mi)
2 − s

]

2mh(mh −mi − 2mjk)
− 1 , (33)

but the difference is at the level of 1% and can be safely
neglected. The squared absolute value of the amplitude,
|Ahijk(x, y)|2, is then expanded for η′ → ηππ and the
charged decay modes of η, η′ → 3π as

|A(x, y)|2 = |N |2
[

1 + ay + by2 + cx2 + dy3 + · · ·
]

, (34)

while for the decays into three identical particles Bose
symmetry dictates the form

|A(x, y)|2 = |N ′|2
[

1 + g(y2 + x2) + · · ·
]

. (35)

For the Dalitz plot parameters a, b, c of η → π+π−π0

the experimental situation is not without controversy. We
employ the numbers of [24], since it is the most recent
published measurement and the results appear to be con-
sistent with the bulk of the other experiments listed by
the Particle Data Group [11]. They differ somewhat from
the new preliminary results of the KLOE Collaboration [9]
that has found a non-zero value for the third-order param-
eter d which was not included in previous experimental
parametrizations. Very recently the Dalitz plot param-
eters of η′ → ηπ+π− have been determined with high
statistics by the VES experiment [10]. While we will em-
ploy in our fits the experimental Dalitz parameters pro-
vided by the Particle Data Group [11], we will also dis-
cuss further below the modifications of our results when
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Table 1. Results for the partial decay widths of η → 3π, the branching ratio r1, and the Dalitz plot parameters compared to
experimental data from [11] and [24].

Γη→3π0 (eV) Γη→π+π−π0 (eV) r1
Theo. 422± 13 290± 8 1.46± 0.02
Exp. 419± 27 292± 21 1.44± 0.04

a b c g
Theo. −1.20± 0.07 0.28± 0.05 0.05± 0.02 −0.062± 0.006
Exp. −1.22± 0.07 0.22± 0.11 0.06± 0.02 −0.062± 0.008

the two new and precise (but so far preliminary) data
sets [9, 10] are taken into account. Note that the slope
parameters of η′ → 3π have not yet been determined
experimentally, but such a measurement is intended at
WASA@COSY [12].

From the unitarized partial-wave T -matrix in eq. (17)
one may also derive the phase shifts in meson-meson scat-
tering. Hence, our approach is further constrained by the
experimental phase shifts for ππ → ππ,KK̄ scattering.
The results of the fit are presented in appendix B.

The coupled-channels framework entails several pa-
rameters, i.e. the low-energy constants (LECs) of the
chiral effective Lagrangian up to fourth order and the
subtraction constants amm̄ in the loop integrals Gmm̄

which are embodied in the coupled-channels T -matrix. It
turns out that only the fit to the ππ phase shifts in the
I = J = 1 channel (which includes the ρ resonance) re-
quires a non-zero value of the corresponding subtraction

constant a
(I=J=1)
ππ (µ). The regularization scale of Gmm̄ is

set to µ = 1 GeV for all channels. As a guiding principle
for the importance of the LECs and in order to reduce
their number, we make use of large-Nc arguments in the
effective Lagrangian and set all LECs to zero which are
of order O(1/N2

c ) and thus suppressed by at least three
powers of 1/Nc with respect to the leading coefficients.
Their effects are expected to be small and can be par-
tially compensated by readjusting the leading and sub-
leading coefficients in our fits. Furthermore, we set those
parameters to zero by hand which turn out to be less sen-
sitive to the processes under consideration. It turns out

that with the exception of v
(2)
1 and β

(0)
14 all parameters

of order O(1/Nc) have a negligible effect when varying
them within small ranges around zero and can be safely
neglected. To summarize, we only keep the LECs

β
(0)
0 , β

(0)
3 , β

(0)
5 , β

(0)
8 = O(Nc) ,

v
(2)
0 , v

(1)
3 , β

(0)
1 , β

(0)
2 , β

(0)
4 , β

(0)
6 , β

(0)
7 , β

(0)
13 , β

(0)
18 = O(1) ,

v
(2)
1 , β

(0)
14 = O(1/Nc) .

(36)

The coefficient v
(2)
0 is related to the mass of the η′ in the

chiral limit, m0, and has been constrained to the range
0.00183GeV4 . . . 0.00523GeV4 in [18], while the rest of
the parameters of order O(N i

c) may be varied within small
ranges around zero, naturally given by ±N i

cf
2/(12Λnχ),

where n depends on the dimension of the constant un-
der consideration. In conventional ChPT the β0 term is
usually not listed, since it can be absorbed into other con-

tact terms by virtue of a Cayley-Hamilton matrix iden-
tity. However, this transformation mixes different orders
in 1/Nc, hence we prefer to keep this term explicitly, in
order to retain the clean large-Nc behavior of the βi’s.

By fitting to all available (published) data sets of the
investigated hadronic η, η′ decays and the phase shifts an
overall χ2 function is calculated. To this end, we compute
χ2 values for all observables, i.e. phase shifts, decay
widths, branching ratios and Dalitz plot parametriza-
tions, divide them by the number of experimental data
points and take the sum afterwards. In order to find the
minima of the overall χ2 function, we perform a random
walk in parameter space, where only steps which lead to a
smaller χ2 value are allowed, and a very large number of
random walks with randomized starting points is carried
out. We observe four different classes of fits which are
all in very good agreement with the currently available
(published) data on hadronic decays, but differ in the
description of the decays η′ → 3π where experimental
constraints are scarce.

The errors which we specify in the following for all
parameters and observables reflect the deviations which
arise when we allow for χ2 values which are at most 15%
larger than the minimum value. Although this choice is
somewhat arbitrary, it illustrates how variation of the χ2

function in parameter space affects the results.

4.1 η → 3π

The results for the decays η → 3π, which agree very well
with the experimental values, are shown in table 1. Most
remarkably our approach is able to reproduce the new,
precise value of the η → 3π0 Dalitz parameter g measured
by the Crystal Ball Collaboration [25] (and prevailing the
PDG average value [11]) which could not be met in previ-
ous investigations [5, 8]. With regard to [8] this is mainly
due to the larger number of chiral parameters taken into
account in the present work and the improved fitting rou-
tine utilized. The PDG number for g does, however, not
agree with the preliminary g value of the KLOE Collabo-
ration [9] which comes close to the results given in [5, 8].
The detailed discussion of the new KLOE results for the
Dalitz plot distributions of η → π+π−π0 and η → 3π0 is
deferred to sects. 4.5 and 5.

When electromagnetic effects are neglected (which
is justified according to Sutherland’s theorem [1]), the
isospin-violating decay of η into three pions can only take
place via a finite quark mass difference mu − md. The
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decay amplitude is therefore proportional to m2
ε defined

in eq. (4) and we have employed the value which follows
from Dashen’s theorem, eq. (5) [17]. Deviations of the cal-
culated decay widths from the measured numbers could
thus be interpreted as a hint to non-negligible sublead-
ing corrections to the leading-order result by Dashen. In
order to quantify these deviations, one commonly defines
the double quark mass ratio

Q2 =
ms − m̂

md −mu

ms + m̂

md +mu
, (37)

and Dashen’s theorem yields QDashen = 24.1. Differing
Q-values lead to decay widths which are related to the
original one, ΓDashen, by

Γ =

(

QDashen

Q

)4

ΓDashen . (38)

Taking into account theoretical as well as experimental
uncertainties, we find from a comparison of our results
with data Q = 24.0 ± 0.6 which is consistent with the
result of [8]. Note, however, that this obvious agreement
with Dashen’s theorem merely reflects the fact that our
approach is capable of reproducing the experimental de-
cay widths of η → 3π. Due to the larger number of chiral
parameters with increased ranges compared to [8] and the
improved fitting procedure we can easily compensate the
effects from variations in Q by readjusting the chiral pa-
rameters of our approach. We have checked that variations
of Q in the range of 20–24 which covers the various (and
partially contradictory) results in the literature [26] can
be accommodated within this approach. Therefore, our
analysis does not allow for conclusions on the size of the
violation of Dashen’s theorem.

Extending the work of [8] we have also taken p-wave
final state interactions into account. By setting these
contributions to zero, we find that the decay width of
η → π+π−π0 is reduced by a tiny fraction of 0.7% im-
plying rapid convergence of the partial-wave expansion.
The Dalitz plot parameters, which are more sensitive to
the precise form of the amplitude than the width, are
also only moderately altered. Without p-waves we obtain
a = −1.15±0.07, b = 0.29±0.05, c = 0.01±0.02. Note that
due to Bose symmetry there is no p-wave contribution to
the decay into three neutral pions.

Certainly, the most important isospin channel for final
state interactions in η → 3π is the I = 0 s-wave rescatter-
ing which is dominated by ππ interactions. Omitting this
channel reduces the decay width by 73%. The other two
s-wave channels with isospin one and two, respectively,
interfere destructively with the former. To be more pre-
cise, taking out the I = 1 part, which mainly reflects πη
interactions, enlarges the decay width of η → π+π−π0

(η → 3π0) by 9% (10%), while setting the I = 2 channel,
which is purely ππ rescattering, to zero results in an en-
hancement of the decay widths by 16% (20%). The only
relevant p-wave contributions arise from the I = 1 chan-
nels πη, πη′ which are C-even and thus do not couple to
C-odd channels related to the ρ(770) resonance. Neglect-
ing the I = J = 1 channels reduces the η → π+π−π0

decay width by roughly 1%. The numerical difference to
the statement on the importance of p-wave contributions
in the previous paragraph is due to the fact that for
the decomposition into isospin channels we use isospin-
symmetrized masses, while otherwise we employ the phys-
ical values of the masses.

Finally, we have also examined to which extent the
amplitude violates three-particle unitarity in the specta-
tor approximation as described in sect. 3.1. In order to
quantify the violation of eq. (27), we compute the abso-
lute value of the difference between l.h.s. and r.h.s. nor-
malized by the modulus of the amplitude Ahijk. Aver-
aged over the whole Dalitz plot we find this violation to
be (2.5 ± 0.3)% for the process η → π+π−π0 and —even
smaller— (1.3± 0.3)% for the decay into three neutral pi-
ons. The fact that the violation of eq. (27) is so small is
non-trivial since only two-body unitarity, but not three-
body unitarity, is implemented in the definition of the de-
cay amplitude. This may suggest that three-body effects
(like multiple scattering of one particle in the final state
with the other two or a genuine three-body interaction)
are of the same order of magnitude. A more detailed inves-
tigation of this issue will be the subject of future work [23].

4.2 η′
→ 3π

Only sparse experimental information exists on the decays
of η′ into three pions. The experimental decay width of
η′ → 3π0 is [11]

Γ (exp)(η′ → 3π0) = (315± 78) eV (39)

which is nicely met within our approach:

Γ (theo)(η′ → 3π0) = (330± 33) eV . (40)

For the decay into π+π−π0 only a weak experimental up-
per limit exists [11],

Γ (exp)(η′ → π+π−π0) < 10 keV . (41)

Due to the large phase space available in these two decay
modes of the η′, final state interactions are expected to
be of greater importance. Indeed we find that in contrast
to the processes η → 3π and η′ → ηππ the Dalitz plot
distribution of η′ → 3π —depending on the choice of the
chiral parameters— cannot always be well parametrized
by a simple second- or third-order polynomial in x and y.
Nevertheless, it happens that all our fits may be classified
into four groups mainly due to the different values of the
lower-order coefficients in x and y. The numerical results
for these most relevant coefficients are compiled in tables 2
and 3 along with the predicted width of η′ → π+π−π0 and
the order of the polynomial in x and y which is needed
to obtain a reasonable approximation to the Dalitz plot
distribution resulting from our approach. Note that due
to charge conjugation invariance, only even powers of x
appear. Examples of two very different Dalitz plots are
shown in fig. 4. Despite these differing predictions, one
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Table 2. Results for the decay width of η′ → π+π−π0 and the leading Dalitz plot parameters. The last line denotes the order
of the polynomial which is needed to describe the Dalitz plot distribution.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Γη′→π+π−π0 (eV) 470± 200 520± 200 740± 420 620± 180

Coeff. y (“a”) 0.6± 5.2 2.4± 1.7 0.3± 1.1 4.4± 1.2

Coeff. y2 (“b”) 10.0± 11.0 2.1± 7.5 −5.2± 1.5 14.9± 6.7

Coeff. x2 (“c”) 0.1± 3.6 −0.7± 1.4 0.1± 1.6 −3.7± 1.5

Coeff. y3 (“d”) −6.1± 11.5 −0.6± 14.0 −8.8± 7.8 27.5± 18.1

Coeff. x2y −10.8± 11.2 2.0± 3.0 −7.4± 5.6 −1.5± 2.8

Coeff. y4 0.6± 12.2 −3.2± 7.3 23.3± 20.7 24.5± 11.6

Coeff. x2y2 13.9± 23.6 11.8± 22.4 −17.7± 9.4 39.0± 12.7

Coeff. x4 −0.5± 11.5 −1.2± 16.1 15.4± 9.8 −20.5± 9.4
Poly. order 6–8 4–8 ≥ 8 ≥ 8

Table 3. Results for the leading Dalitz plot parameters of η′ → 3π0. The last line denotes the order of the polynomial which
is needed to describe the Dalitz plot distribution.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Coeff. x2, y2 (“g”) 0.1± 1.7 −2.7± 1.0 −2.1± 0.7 −0.2± 0.6

Coeff. y3 −0.5± 1.4 −1.7± 0.7 −0.2± 0.6 −0.8± 0.6

Coeff. x2y 1.6± 4.1 5.0± 1.9 0.6± 1.8 2.3± 1.7

Coeff. y4 0.2± 1.4 2.6± 1.5 1.6± 0.8 −0.1± 1.1

Coeff. x2y2 0.4± 2.9 5.3± 2.8 3.5± 1.7 0.2± 2.5

Coeff. x4 0.1± 1.5 2.7± 1.5 1.7± 0.9 0.1± 1.2
Poly. order 3–6 5–6 4–6 3–5
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Fig. 4. Sample η′ → π+π−π0 Dalitz plot distribution |A(x, y)/A(0, 0)|2 of cluster 2 which can be described by a fourth-order
polynomial in x and y (a) and of cluster 3 which must be parametrized by a polynomial of eighth order (b). Due to their
symmetry under x→ −x only the right half of the Dalitz plots is shown.
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Table 4. Results for the partial decay width of η′ → ηπ+π− and the Dalitz plot parameters compared to experimental data
from [11].

Γη′→ηπ+π− a b c

Theo. 81± 4 keV −0.116± 0.024 0.000± 0.019 0.016± 0.035
Exp. 89± 11 keV −0.16± 0.06

Table 5. Results for the partial decay width of η′ → ηπ0π0 and the Dalitz plot parameters compared to experimental data
from [11].

Γη′→ηπ0π0 a b c

Theo. 46± 3 keV −0.122± 0.025 0.003± 0.018 0.019± 0.039
Exp. 42± 6 keV −0.116± 0.026 0.003± 0.017 0.00± 0.03

should keep in mind that all fits describe all available ex-
perimental data at the same level of accuracy. The Dalitz
plot distributions of these decays pose therefore tight con-
straints for our approach and must be compared with fu-
ture experiments at the WASA@COSY facility.

While in η′ → 3π0 p-wave contributions in two-body
rescattering are forbidden by Bose symmetry, they can be
large in η′ → π+π−π0 due to large phase space. Inter-
estingly, their size varies significantly depending on the
cluster of fit parameters. They are largest for the fits of
cluster 4 where setting them to zero diminishes the decay
width by 50% on average. The partial width is reduced by
44% (28%) for cluster 3 (cluster 1), while for the parameter
sets of cluster 2 suppressing the p-wave contributions al-
ters the width by less than 10%. The large higher-order co-
efficients of the η′ → π+π−π0 Dalitz plot distribution are
mainly due to p-wave contributions. If p-waves are omit-
ted, the fits of clusters 3 and 4 can be well parametrized
by polynomials of fifth order in x and y, while for most
fits in clusters 1 and 2 a sixth-order polynomial would be
sufficient, cf. table 2. Note that in analogy to the decay
η → 3π p-wave final state interactions with the quantum
numbers of the ρ(770) meson do not occur.

In η′ → 3π the contributions from the various isospin
channels depend sensitively on the cluster, e.g., omitting
the I = J = 0 channel in η′ → 3π0 reduces the decay
width by 84% for cluster 1, while it is enhanced by 132%
on average for the fits of cluster 3. For brevity we refrain
from giving the full list of isospin contributions.

4.3 η′
→ ηππ

In tables 4 and 5 we show the results for the domi-
nant hadronic decay modes of the η′, namely the de-
cays into ηπ+π− and ηπ0π0. They are all in very good
agreement with the existing (and published) experimen-
tal data. Furthermore, we have calculated the branching
ratio r2, eq. (31), which links the two neutral decay modes
η′ → 3π0 and η′ → ηπ0π0. We find

r
(theo)
2 = (71±7)×10−4, r

(exp)
2 = (74±12)×10−4 [11],

(42)
and the accordance with experiment is again persuasive.

In the isospin limit,mu = md, the decay width Γ (η′ →
ηπ+π−) would be exactly given by 2 Γ (η′ → ηπ0π0), due

to the symmetry factor for identical particles in the lat-
ter process. If, however, one is interested in the isospin-
breaking contributions in the amplitude of η′ → ηππ, one
ought to disentangle it from phase space effects which
are caused by the different masses of charged and neutral
pions. With an isospin-symmetric decay amplitude, but
physical masses in the phase space factors, we find a ratio,

r3 =
Γ (η′ → ηπ+π−)

Γ (η′ → ηπ0π0)
= 1.78± 0.02 , (43)

which is smaller than 2 and compares to r3 = 1.77± 0.02
when isospin breaking is taken into account in the am-
plitude. (For comparison, if the amplitude is set constant
and the physical pion masses are employed in the phase
space integrals, the ratio is given by r3 = 1.77.) We may
thus conclude that within our approach isospin-breaking
corrections in the η′ → ηππ decay amplitude are tiny.
The branching ratio r3 has not been measured directly. If,
however, we calculate the ratio of fractions Γi/Γtotal for
these two decay modes using the numbers and correlation
coefficients published by the Particle Data Group [11],
we arrive at

r
(exp)
3 = 2.12± 0.19 (44)

by means of standard error propagation. Such a large
branching ratio would indicate significant isospin-violating
contributions in the amplitude. But the experimental
uncertainties are sizable and should be reduced by the
upcoming experiments with WASA at COSY [12] and at
MAMI-C [13].

It turns out that p-wave final state interactions are tiny
in the processes η′ → ηππ. The corrections to the decay
widths which they generate are smaller than 0.02% and
can thus be safely neglected. Consequently, in the isospin
basis the relevant two-body channels are given by s-wave
interactions of isospin 0 or 1 states. When examining the
influence of these two channels on the η′ → ηππ partial
widths we observe an interesting pattern. By setting the
I = 0 channel to zero for the fits of cluster 1 (cluster 2) the
widths are lowered by 22% (22%), while suppressing the
I = 1 part reduces them by 81% (72%). When the fit pa-
rameters of clusters 1 and 2 are employed, the isospin one
channel which includes the tail of the a0(980) resonance
thus appears to be of great importance for the decay mode
η′ → ηππ confirming the findings of [8] and [6]. The situ-
ation is, however, reversed if one considers the fits of the
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Table 6. Numerical values of the fit parameters itemized according to the four different clusters of fits. They also determine
the two η-η′ mixing parameters R0η and R8η′ . The regularization scale in G is set to µ = 1 GeV.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

v
(1)
3 ×103GeV−2 0.82± 1.65 0.23± 1.46 −1.92± 0.62 −1.47± 0.83

v
(2)
0 ×103GeV−4 3.15± 0.39 3.21± 0.49 3.07± 0.42 2.89± 0.30

v
(2)
1 ×103GeV−2 −0.16± 0.34 −0.12± 0.32 −0.07± 0.17 −0.13± 0.13

β
(0)
0 ×103 −0.12± 0.18 −0.07± 0.22 −0.06± 0.19 −0.02± 0.32

β
(0)
1 ×103 −0.47± 0.25 −0.57± 0.22 −0.49± 0.14 −0.49± 0.18

β
(0)
2 ×103 0.77± 0.18 0.72± 0.23 0.69± 0.19 0.64± 0.34

β
(0)
3 ×103 0.05± 0.55 0.19± 0.51 0.06± 0.26 0.11± 0.15

β
(0)
4 ×103 0.33± 0.18 0.34± 0.15 0.39± 0.12 0.42± 0.14

β
(0)
5 ×103 0.73± 0.62 0.86± 0.66 0.77± 0.83 0.48± 0.22

β
(0)
6 ×103 0.00± 0.30 0.06± 0.28 −0.25± 0.13 −0.34± 0.15

β
(0)
7 ×103 0.13± 0.25 0.42± 0.33 1.01± 0.49 0.76± 0.48

β
(0)
8 ×103 −0.06± 0.41 −0.38± 0.46 0.02± 0.51 0.15± 0.14

β
(0)
13 ×103 −0.08± 0.65 −0.02± 0.60 0.16± 0.42 0.23± 0.17

β
(0)
14 ×103 0.08± 0.35 −0.03± 0.31 −0.21± 0.22 −0.25± 0.14

β
(0)
18 ×103 0.80± 0.80 0.99± 0.82 1.51± 0.47 1.49± 0.30

a
(I=J=1)
ππ ×102 −6.1± 0.3 −6.1± 0.2 −6.1± 0.3 −6.0± 0.2

R0η 0.13± 0.26 0.24± 0.23 0.61± 0.13 0.55± 0.17
R8η′ 0.22± 0.11 0.20± 0.08 −0.01± 0.11 −0.04± 0.08

remaining two clusters. Taking out the I = 0 channel in
the final state interactions of the fits of cluster 3 (cluster 4)
diminishes the decay widths by 79% (81%), whereas eras-
ing the channel with I = 1 reduces it by only 33% (28%).
Accordingly, for these sets of parameters the I = 0 chan-
nel, which incorporates the effects of the f0(980) resonance
and the ππ correlation at lower energies, has higher impact
on the decay widths than the a0(980) channel. Although
the fits of all four clusters yield very similar results for
all η′ → ηππ observables, the two scenarios can be distin-
guished by their correlation with the processes η′ → 3π
provided within our approach. Thus, a precise measure-
ment of η′ → 3π decay parameters can also help to clarify
the importance of a0(980) or f0(980) resonance contribu-
tions to the dominant decay mode of the η′ into ηππ.

The violation of three-particle unitarity as described
in sect. 3.1 is not as tiny as in the case of η → 3π, but
still remarkably small. Using the definition of sect. 4.1, we
find averaged deviations of (11±7)% for η′ → ηπ+π− and
(10± 6)% for η′ → ηπ0π0. It remains to be seen whether
corrections from other three-body effects which are not
included in the approach will be of comparable size [23].

4.4 Numerical values of the chiral parameters and
η-η′ mixing

Before presenting numerical results for the chiral param-
eters, we would like to stress that the values of the cou-
plings of the effective Lagrangian employed in the coupled-
channels approach are in general not identical to those in

the perturbative framework. First, contributions from tad-
poles (which include also effects from the so-called on-shell
approximation), and t-/u-channel diagrams in the inter-
action kernel have been absorbed into the coupling con-
stants. Second, the BSE summarizes meson-meson scat-
tering in the s-channel to infinite order. The contributions
beyond a given chiral order are missing in the perturbative
approach and lead to changes in the values of the couplings
when fitting the results to data. Finally, the subtraction
point in the renormalization procedure can be different in
both schemes. Hence, one must expect differences in the
values of the coupling constants utilized in both frame-
works.

In table 6 we show the numerical values of the low-
energy constants as well as the non-zero subtraction con-

stant a
(I=J=1)
ππ as they come out for the fits of the four

different clusters. In addition we display the parameters of
η-η′ mixing R0η, R8η′ which are determined by the values

of the LECs v
(1)
3 , β

(0)
5 , and β

(0)
18 in virtue of eq. (8). Note

that compared to the analysis in [8] we have increased
the number of chiral parameters which —in conjunction
with an improved fitting procedure— helped to consid-
erably improve the agreement with experimental data on
hadronic η, η′ decays.

According to the mixing parameters, the four clusters
of fits may be divided into two groups. For clusters 1
and 2 R0η and R8η′ are both of similar small size and
(mainly) positive, while clusters 3 and 4 feature a large,
positive R0η and an R8η′ which is close to zero. Within
the present analysis the second mixing parameter R8η′ ,
which characterizes the fraction of the pure octet field η8
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Table 7. Results for the Dalitz plot parameters of η′ → ηππ when the VES data [10] are included in the fit.

η′ → ηπ+π−

a b c
Theo. −0.116± 0.011 −0.042± 0.034 0.010± 0.019
Exp. [10] −0.132± 0.019 −0.108± 0.033 −0.046± 0.022

η′ → ηπ0π0

a b c
Theo. −0.127± 0.009 −0.049± 0.036 0.011± 0.021
Exp. [11] −0.116± 0.026

in the physical η′, turns out to be more tightly constrained
by the fit than R0η which describes the singlet content of
the η. In all cases the numerical results for R0η and R8η′

deviate sizably from an orthogonal mixing scheme, where
R0η = −R8η′ . For comparison, a mixing angle of −20◦ in
the one-mixing angle scheme as found in the literature [3]
would correspond to R0η = −R8η′ = 0.34.

The fitting procedure does not constrain all parame-

ters at the same level of accuracy. While some (e.g. v
(1)
3 ,

β
(0)
3 , β

(0)
5 , β

(0)
8 , β

(0)
18 ) may vary within large ranges (partly

compensating each other), others like v
(2)
0 , β

(0)
0 , β

(0)
1 , β

(0)
2 ,

and β
(0)
4 are relatively tightly fixed. These boundaries con-

stitute important constraints which must be met in future
coupled-channels analyses of mesonic processes within the

approach described here. In particular, the coefficient v
(2)
0

encodes the mass of the η′ in the chiral limit,m0, by virtue
of

m2
0 =

2v
(2)
0

f2
. (45)

The fact that the η′ does not become massless in the
chiral limit is a consequence of the axial U(1) anomaly
of QCD which generates in the divergence of the sin-
glet axial-vector current an additional, non-vanishing term
involving the gluonic field strength tensor. In the effec-

tive theory this term is represented by v
(2)
0 . Employing

f = 88MeV, the value of the pseudoscalar decay constant
in the chiral limit [27], we find from the fits of all clusters
m0 = (900± 80)MeV which is close to the physical mass
of the η′.

4.5 Recent experimental developments

Very recently the Dalitz plot distributions of the decays
η → 3π and η′ → ηπ+π− have been determined experi-
mentally with high statistics by the KLOE [9] and the VES
Collaboration [10], respectively. In this section we will dis-
cuss the changes of our results when these new and precise
(though not yet published) data are included in the fit in-
stead of the PDG values. In table 7 we show the results of a
fit, where the VES numbers are taken into account1. Since
the amplitudes for η′ → ηπ+π− and η′ → ηπ0π0 would be

1 Note, however, that the analysis of the VES experiment
is still not completed and the quoted numbers may slightly
change.

equal in the isospin limit and deviations are thus isospin
breaking and small in our approach, we only include the
leading Dalitz parameter a of η′ → ηπ0π0 and omit
the higher ones which are —assuming only small isospin-
violating contributions— not quite compatible with the
new results of the VES experiment for η′ → ηπ+π−.
Within our approach the c value has a tendency to re-
main on the positive side in contrast to the result of the
VES Collaboration; nevertheless our results are in reason-
able overall agreement with the Dalitz plot parameters ex-
tracted from the VES experiment. Most remarkably, none
of the various other observables (decay widths, branching
ratios, Dalitz parameters of other decay modes, etc.) is sig-
nificantly altered when the VES numbers are included in
the fit, so that the very good agreement of the results with
all published data of hadronic η and η′ decays is retained.

Next, we have replaced the Dalitz plot parameters of
η → π+π−π0 and η → 3π0 quoted in sect. 4.1 by the
new and precise results of the KLOE Collaboration [9]
omitting again the VES numbers, in order to avoid in-
terference of these two new, but so far unpublished data
sets. The results are compiled in table 8. While it is pos-
sible to accommodate the KLOE numbers for the a and
c coefficients of the η → π+π−π0 Dalitz plot distribution,
our results do not agree with b and d. In particular, the
value of the y2-coefficient b differs from the KLOE num-
ber, which has been determined very precisely, by more
than five standard deviations. Within the given bound-
aries for the low-energy coefficients of the chiral effective
Lagrangian our approach is unable to produce a b value
as small as the number advocated by the KLOE Collabo-
ration [9]. Note that such a small value also implies unex-
pectedly large corrections to the well-known current alge-
bra result b = a2/4 [4, 28]. It may indicate that contribu-
tions from higher chiral orders of the effective Lagrangian
could play a role for this quantity. But the inclusion of
such higher orders is beyond the scope of the present in-
vestigation and will not be discussed here.

On the other hand, the KLOE result for the leading-
order coefficient of the η → 3π0 Dalitz plot, g, cannot
be met, while our result still remains compatible with the
PDG value, −0.062 ± 0.008 [11]. Generally, we observe
the pattern, that reducing the b value correlates with an
enhancement of the modulus of g. Finally, fitting to the
new KLOE numbers destroys the agreement of the mea-
sured branching ratio r1, eq. (31), and our result, which
is significantly increased. The accordance of the rest of
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Table 8. Results for the Dalitz plot parameters of η → 3π and the branching ratio r1, eq. (31), when the KLOE data [9]
are included in the fit. For simplicity we have added the statistical and systematic errors specified in [9] linearly and display
symmetrized error bars according to the larger value. Note that our coefficients c, d, and g correspond to d, f , and 2α in [9],
respectively.

η → π+π−π0

a [9] b [9] c [9] d [9]
Theo. −1.054± 0.025 0.185± 0.015 0.079± 0.026 0.064± 0.012
Exp. −1.072± 0.013 0.117± 0.012 0.047± 0.011 0.13± 0.03

η → 3π0

g [9] r1 [11]
Theo. −0.058± 0.011 1.50± 0.01
Exp. −0.026± 0.018 1.44± 0.04

the calculated observables with experimental data is only
marginally affected by including the KLOE results, also
the partial decay widths of the two η → 3π decay modes
which enter r1 remain consistent with the —admittedly
large— experimental error bars.

In table 8 we employ the r1 value which is determined
by the Particle Data Group by performing a χ2-fit using
one decay rate and 18 branching ratios (quoted as “our
fit” in [11]). The result of the most recent direct mea-
surement of r1 [29], however, is a bit larger and has also
larger error bars: r1 = 1.52 ± 0.12, where we have added
statistical and systematic errors linearly. Employing this
number instead of the PDG value slightly improves the
fit to the KLOE data, but does not resolve the disagree-
ment with the Dalitz parameters b and g. Taking this value
for r1 we find a = −1.049 ± 0.025, b = 0.178 ± 0.019,
c = 0.079± 0.028, d = 0.064± 0.012, g = −0.056± 0.012,
r1 = 1.51± 0.01.

We mention in passing that after relaxing the natu-
ralness assumption on the size of the chiral parameters
described at the beginning of this section, we have found
a second class of fits, which are slightly closer to the re-
sults of the KLOE Collaboration for the Dalitz plot of
η → π+π−π0. Apart from involving unnaturally large val-
ues of some of the LECs, they entail a g value which is
even larger in magnitude than the one of the previous fits,
table 8. Moreover, the agreement with the experimental
phase shifts of ππ scattering in the I = J = 0 channel
shown in fig. 5 is considerably worsened. The branching
ratio r1, on the other hand, is not altered, cf. table 8.

5 Dalitz plot parameters of η → 3π

As pointed out in the previous subsection it is not possible
to accommodate the new KLOE results for the Dalitz pa-
rameters of η → 3π together with the measured branching
ratio of the two decay modes, r1. In this subsection we
will present an explanation of how all these experimen-
tal quantities can be related in a phenomenological way
without making use of model-dependent assumptions on
the construction of the decay amplitudes.

The main ingredient is the ∆I = 1 selection rule which
relates the η → π+π−π0 decay amplitude A to the ampli-

tude Ā for η → 3π0 [4],

Ā(s, t, u) = A(s, t, u) +A(t, u, s) +A(u, s, t) . (46)

This rule is valid up to tiny corrections from QCD (sup-
pressed by O(m2

ε)) and of electromagnetic origin (sup-
pressed by O(α2))2. In analogy to the experimental
parametrization of the Dalitz plot distribution, eq. (34),
we assume that the amplitudeA can be well approximated
by a polynomial

A(x, y) = N
[

1 + αy + βy2 + γx2 + · · ·
]

(47)

with complex coefficients α, β, γ. We will drop all terms
of third order and beyond and work with this minimal
parametrization of A which is able to describe the experi-
mental Dalitz plot distribution as measured by the KLOE
Collaboration3 [9]

|A(x, y)|2 = |N |2
[

1 + ay + by2 + cx2 + dy3]

with4 a = −1.072± 0.013, b = 0.117± 0.012,

c = 0.047± 0.011, d = 0.13± 0.03 .

(48)

Employing the ∆I = 1 selection rule, eq. (46), we are
able to derive expressions for the leading Dalitz plot pa-
rameter of η → 3π0, g, and for the branching ratio r1.
Since the complex normalization factor N is irrelevant for
the determination of the g parameter and drops out in
the branching ratio r1, we are left with six free constants
which parametrize the amplitude A, the real and imagi-
nary parts of α, β, and γ. Four of these can be fixed by
matching |A|2 to the central experimental values of a, b,
c, d. However, also the remaining two are constrained by
the fact that the higher-order terms x2y, x2y2, x4, and
y4, which automatically emerge when squaring A, are ex-
pected to have small coefficients, since eq. (48) appears to

2 Our chiral unitary approach iterates isospin-breaking terms
and thus includes corrections to the ∆I = 1 selection rule, but
we have checked that these are numerically tiny.
3 Note that in contrast to [9] we do not include C-violating

terms proportional to x. Therefore, our coefficients c and d
correspond to d and f in [9], respectively.
8 For simplicity we have added the statistical and systematic

errors specified in [9] linearly and display symmetrized error
bars according to the larger value.
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be a good parametrization of the experimental distribu-
tion. As an upper limit for the moduli of these higher co-
efficients not observed in experiment we choose the value
of the highest-order experimental coefficient in eq. (48),
d = 0.13.

Fitting the remaining two parameters in A within the
boundaries dictated by the smallness of the higher-order
terms in |A|2 to the experimental numbers for r1 and
KLOE g we find

g(theo)= −0.074± 0.012, g(exp)= −0.026± 0.018 [9],

r
(theo)
1 = 1.47± 0.03, r

(exp)
1 = 1.44± 0.04 [11],

(49)
where the theoretical uncertainties represent the propa-
gation of the errors of the input parameters in eq. (48).
While the two numbers for the branching ratio r1 are very
well compatible, the calculated value of g differs by about
two standard deviations from the number extracted by the
KLOE Collaboration. It is, however, consistent with the
value published by the Crystal Ball Collaboration [25].

We would like to point out that raising the order of the
polynomial parametrization of the amplitude in eq. (47)
does not alter these conclusions. Although it would in-
crease the number of adjustable parameters, at the same
time more and more constraints would be generated by
the fact that the numerous higher-order coefficients of
|A|2 all have to be close to zero for eq. (48) to be a
good parametrization of the experimental distribution. As
a matter of fact, we have explicitly checked that the inclu-
sion of, e.g., a y3 term in the parametrization of the ampli-
tude, eq. (47), yields only tiny numerical improvements for
the fit to g and r1. As in sect. 4.5, we have verified that our
results do not change significantly, when the PDG value
for r1 is replaced by the most recent direct experimental
determination of this branching ratio which yields r1 =
1.52±0.12 [29]. Instead of the numbers given in eq. (49) we
then obtain g = −0.071±0.012 which is only slightly closer
to the KLOE number and r1 = 1.50± 0.03. The main re-
striction for the parameters is thus given by the size of the
higher-order coefficients of |A|2 and not by the value of r1.

We have also checked to what extent the phenomeno-
logical amplitude described here fulfills the unitarity con-
dition discussed in sect. 3.1. This can be done utilizing
purely experimental input and thus without making use of
unitarized ChPT, since the scattering amplitude T̂l which
enters eq. (27) may be expressed by the experimentally de-
termined phase shifts of ππ scattering, see [22] for the ex-
plicit expressions. The violation of three-particle unitarity
turns out to be 10% (5%) for η → π+π−π0 (η → 3π0) on
average over the full Dalitz plot when the parameters are
fixed to physical observables as above, cf. eqs. (48), (49).
The free normalization constant N is chosen in such a way
that the unitarity violation is minimized at the center of
the η → π+π−π0 Dalitz plot. Although the polynomial
amplitude does not incorporate any constraints from uni-
tarity, the violations turn out to be rather modest. If, on
the other hand, the restrictions on the size of higher-order
coefficients of |A|2 are released and the fit is forced to re-
produce the central values of the branching ratio r1 and

the KLOE g value, we observe unitarity violations as large
as 43% for η → π+π−π0 and 45% for η → 3π0.

6 Conclusions

In the present work we have investigated the hadronic
decays η, η′ → 3π and η′ → ηππ within a chiral uni-
tary approach based on the Bethe-Salpeter equation. The
s- and p-wave interaction kernels of the BSE are derived
from the U(3) chiral effective Lagrangian up to fourth
chiral order with the η′ as an explicit degree of freedom.
Within this approach the incoming η or η′ decays into
three pseudoscalar mesons and then two of these mesons
rescatter —elastically or inelastically— an arbitrary num-
ber of times, while the third meson remains a spectator.
The final state interaction of the two mesons is described
by the solution of the BSE and satisfies two-particle uni-
tarity. For the decays η → 3π and η′ → ηππ we have
also estimated to what extent constraints from three-body
unitarity, which is not incorporated in the approach, are
fulfilled and find that the deviations are rather modest.

The chiral parameters of the approach are fitted by
means of an overall χ2 fit to available data on the hadronic
decay modes of η and η′ and meson-meson scattering
phase shifts. We obtain very good agreement with cur-
rently available data on the decay widths and spectral
shapes. In fact, we observe four different classes of fits
which describe these data equally well, but differ in their
predictions for yet unmeasured quantities such as the
η′ → π+π−π0 decay width (for which there exists only
a weak upper limit) and the Dalitz slope parameters of
η′ → 3π. The results obtained may be tested in future ex-
periments foreseen at WASA@COSY and MAMI-C. The
hadronic decays considered here along with phase shifts
in meson-meson scattering pose therefore tight constraints
on the approach and will allow to determine the couplings
of the effective Lagrangian up to fourth chiral order. It
is important to stress that the values of the parameters
obtained from the fit are in general not the same as in
the framework of ChPT which can be traced back to the
absorption of loops into the coefficients and higher-order
effects not included in the perturbative framework.

An intriguing feature of the fits is that they accom-
modate the large negative slope parameter g of the decay
η → 3π0 measured by the Crystal Ball Collaboration [25]
which could not be met by previous theoretical investiga-
tions. This value must, however, be confronted with the
more recent but yet preliminary g value of the KLOE Col-
laboration [9]. If we replace the PDG data by the KLOE
Dalitz parameters of both the charged and neutral η → 3π
decay, we do not achieve a good overall fit. It appears
that the slope parameters of both η → 3π decays can-
not be fitted simultaneously. In addition, fitting to the
KLOE data destroys the agreement with the experimen-
tal branching ratio of both decays which is known to high
precision. To this end, we have illustrated that utilizing
the ∆I = 1 selection rule which relates both decays and
taking the KLOE parametrization of the charged decay as
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Fig. 5. Results for the phase shifts δI,J of meson-meson scattering for isospin I and partial wave J . The shaded area indicates
the range of fits taken into account within our approach, while the solid line represents the best fit in each particular channel.
The data are from [30] (a), [31] (b), [32] (c), and [33] (d).

input leads in a model-independent way to a g value not
consistent with the KLOE g result.

The importance of the various two-particle channels
with different isospin and angular momentum has been
examined as well. For the η → 3π decays we find that the
major contribution is given by ππ rescattering in the s-
wave I = 0 channel, while the I = 1, 2 channels interfere
destructively with the former. The p-wave contribution in
the charged decay is tiny, since available phase space is
small and the C-odd channels related to the ρ(770) reso-
nance do not occur. For η′ → π+π−π0, on the other hand,
phase space is considerably larger, and the size of the p-
wave contributions ranges from 10% to 50% depending on
the cluster of fits.

For the decays η′ → ηππ we find that the s-wave I = 1
channels dominate for two classes of fits which would con-
firm the importance of the nearby a0(980) resonance as
claimed by previous investigations. But the other two clus-
ters are dominated by the I = 0 channels. These two sce-
narios can be distinguished by their predictions for the
η′ → 3π decays. Thus, a precise measurement of η′ → 3π
decay parameters can also help to clarify the importance

of a0(980) or f0(980) resonance contributions to the dom-
inant decay mode of the η′ into ηππ.
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V. Nikolaenko, A. Starostin and M. Wolke for useful discus-
sions. This work was supported in part by DFG, SFB/TR-
16 “Subnuclear Structure of Matter”, and Forschungszentrum
Jülich.

Appendix A. Fourth-order operators

For completeness, we tabulate those pieces of the La-
grangian of fourth chiral order which are employed in this
work. The full list can be found in [18, 19]. The fourth-
order Lagrangian is of the form

L(4) =
∑

i

βi Oi , (A.1)

where the βi are functions of the singlet field η0 which can
be expanded in terms of this variable in the same manner
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as the Vi in eq. (1) with expansion coefficients β
(j)
i . The

operators Oi which are relevant for this work read

O0 = 〈CµCνCµCν〉 , O1 = 〈CµCµ〉 〈CνCν〉 ,
O2 = 〈CµCν〉 〈CµCν〉 , O3 = 〈CµCµC

νCν〉 ,
O4 = −〈CµCµ〉 〈M〉 , O5 = −〈CµCµM〉 ,
O6 = 〈M〉 〈M〉 , O7 = 〈N〉 〈N〉 ,
O8 = 1

2 〈MM +NN〉 , O13= −〈Cµ〉 〈CµCνCν〉 ,
O14= −〈Cµ〉 〈Cµ〉 〈CνCν〉 , O18= −〈Cµ〉 〈CµM〉 ,

(A.2)
where we have made use of the abbreviations

Cµ = U †∂µU, M = U †χ+ χ†U, N = U †χ− χ†U.
(A.3)

Appendix B. Phase shifts of meson-meson

scattering

In fig. 5 we show the results for the phase shifts of four
meson-meson channels: the I = 0, 2 s-wave and I = 1
p-wave ππ → ππ scattering as well as ππ → KK̄ with
I = J = 0. The agreement with the experimental data
points is remarkably good. The shaded areas indicate the
variation of the results when the overall χ2 value of the
fits is allowed to exceed the minimum by at most 15%, cf.
sect. 4. The variation is particularly small for I = J = 1
ππ scattering which entails the ρ(770) resonance. This fact
is, however, not surprising since this channel does not en-
ter the hadronic η and η′ decays and involves an additional

fit parameter, the subtraction constant a
(I=J=1)
ππ .
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